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The communication delays between the different com- 
ponents of a distributed system often create problems for the 
logical consistency of the overall system behaviour. The ideas 
presented in this paper suggest to eliminate these problems 
by observing certain regularity constraints during the system 
design, which guarantee that the logical behaviour of the 
system is independent of the communication delays. The 
paper presents a descriptive model for the specification of 
distributed systems, and defined system properties which 
imply regular system behaviour. A sufficient condition for 
checking the regularity of a given system is given. The appli- 
cation of the concepts presented is illustrated by several 
examples. 
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1. Introduct ion 

It is common practice to subdivide complex 
systems into a number o f  modules. Usually, a module 
is characterized by a given data structure and a set o f  
operations that may be executed on this dala. Such a 
module may be considered an instance of  an abstract 
data type. Seen from the outside, a data type is 
characterized by  the operations that may be invoked 
on the module by other modules, i.e. the order in 
which these operations may be executed and the 
parameter values exchanged. The other point  of  view 
considers the implementat ion o f  these operations 
inside the module,  for which it is usually necessary to 
specify the data structures of  the module and the 

procedures that implement the externally available 
operations. There may also be some internal book- 
keeping operations invoked inside the module.  

Most systems contain some kind of  parallel activi- 
ties. Thus, in principle, it is possible for the opera- 
tions of  a given module to be invoked by several 
other modules, in an arbitrary order. However, many 
module types only function correctly if  the opera- 
tions are invoked in a specific order. Therefore, the 
correct synchronization of  the module operations 
must be enforced in some appropriate way, perhaps 
by  delaying the calling modules. Many different tools 

have been developed for the specification of  syn- 
chronization mechanisms, for example semaphores, 
monitors,  conditional critical regions, conditions on 

history counter variables [1], etc. In this paper, we 
use a kind of  conditional critical region (see 
section 2). 

1.1. The problem considered 

In this paper we consider the problems that  arise 
from the distribution of  a module over several 
physical components,  which may be located at 
different places. Because o f  the communicat ion delay 
between the different components,  the sharing of  

information between the different components  of  a 
module becomes more complicated. For  example, 
reading a variable in a distant component  generally 
involves a delay implying that the variable may 
already have been updated when the value read is 
obtained. Another  example is the potential  deadlock 
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resulting from call collision, which occurs when two 
communication stations call one another at the same 
instant and, due to the transmission delay, each finds 
the other one busy. In a local context,  these problems 
may be resolved by the introduction of  critical 
regions for the access of  shared variables, but this 
approach is difficult in a distributed context. 

The situation is complicated by the fact that the 
different components may proceed with their local 
processing at a varying speed independent of  one 
another. To obtain a meaningful system behaviour, it 
is necessary to introduce some kind of  synchroniza- 
tion between the different components• A given 
communication protocol between two communicat- 
ing components usually describes a specific 
synchronization behaviour. This paper considers the 
more general problems of  describing an arbitrary 
synchronization scheme between several (possibly 
more than two) asynchronous components,  and 
analysing its behaviour in the presence of  varying 
communication delays• 

2. The descriptive model 

In the following we give only a brief explanation 
of  the descriptive model used for the specification of  
distributed modules since it is similar to models 
described elsewhere [2,3]. 

2•1. The basic model 

In the basic model, the distribution aspect is 
ignored. A module is characterized by a set of  vari- 
ables (declared within the module) and a set o f  
operations. The (internal) state of  the module is 
characterized by the values of  these variables. Each 
operation defines a set o f  possible state transitions. 
They are characterized by the "enabling predicate" o f  
the operation, which is a boolean function of  the 
variables, and the "act ion" of  the operation, which 
updates the variables and is usually written in some 
high-level programming language. Only when the 
enabling predicate is true may the operation be fired, 

1.2. The approach 

We propose the concept of  "regularity" for the 
analysis o f  distributed system modules• Broadly 
speaking, a distributed module is regular if its logical 
behaviour is independant o f  the internal communica- 
t ion delays. The analysis of  a regular module is 
simplified. A proof  of  the correct behavior of  a 
module which is known to be regular may be made 
by assuming negligeable communication delays, 
which is equivalent to assuming a non-distributed 
implementation.  Therefore the analysis is reduced to 
the non-distributed case. However, the problem 
remains how to decide whether a distributed module 
is regular or not. A sufficient condition for regularity 
is given below, which applies in many cases. 

In order to clearly specify and analyse a distri- 
buted system, it seems necessary to describe it in 
some convenient formalism. For this purpose we have 
adopted a particular descriptive model which avoids 
the use of  variables shared at a distance, but  uses 
instead actions, executed in a given component ,  
which may be initiated by remote components,  as 
explained in section 2. In section 3 the concept o f  
regularity is formally defined in terms of  this model, 
and a sufficient condition for regularity is given. 
These ideas are applied to several simple examples in 
section 4. 

Resource Module (the resource manager) 
Variables 

free: boolean; 
Operations 

request; 
when free 
do free .'= false; 

release; 
free := true; 

Initially 
free := true; 

User i Module (the i4h user module of the resource) 
Variables 

state: (start, reserved, done); 

Operations 
request; 

when state = start 
do begin Resource.request; 

u sage; 
when state = reserved 
do begin ...{use resource}; 

release; 
when state = done 
do begin Resource.release; 

Initially 
state := start; ... 

state := reserved end; 

state := done end; 

state := start end; 

Fig. 1. Example of mutual exclusion between N User modules 
accessing a shared resource. 
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i.e. the associated action is executed, thus performing 
a state transition. We assume mutual exclusion 
between the firing of different operations. 

To illustrate this basic model, we show in Fig. 1 an 
example of  mutual exclusion between N User 
modules accessing a shared resource. We use a 
notation similar to Pascal [4] to specify the variables, 
enabling predicates, and actions. An operation is 
written in the form "when (enabling predicate) do 
(action)". We write name. operation to indicate the 
initiation of an operation in another module or 
component. To control the resource access, the 
example uses the customary request and release 
operations which must be called in a consistent order 
by the user modules. A cyclic order of execution is 
enforced for each User module by the state variable. 

2.2. The distributed model 

We will now consider a module to be distributed 
over several physical "components". A typical situa- 
tion is shown in fig. 2, where the module A is distri- 
buted over the physical components, X, Y, Z (pos- 
sibly placed in different geographical locations). 
Some operations of the module are invoked by the 
modules B and D in components X and Z, respec- 
tively. A, in turn, invokes some operations of the 
module C, which is completely inplemented in com- 
ponent Y. It also invokes operations of submodules 
located in components X and Z. 

For the description of  such distributed modules, 
we propose in the following a distributed model 
related to the basic model above. The model is a kind 
of language containing simple primitives for specify- 
ing synchronization and interactions between actions 
executed in the different components of a module. 
To deal with the distribution aspect we introduce the 
following conventions (in addition to those of the 
basic model): 

,.odu o, --_ 
, i - - - - - - - - 1  

- L.__A.2 ~ 

component Y 

! ! 

Fig. 2 

module B 

(a) Each variable of a distributed module is located in 
a single component. 

(b) Each operation is assigned to a single component, 
where it is initiated (either internally by the 
module, or in interaction with another module), 
and its enabling predicate depends only on 
variables located within that component. 

(c) The action of an operation is partitioned into a 
certain number of localized actions, each updating 
the local variables of a particular component, such 
that the new values depend only on the previous 
values of the local variables of that component 
and (possibly) on the variable values of the initiat- 
ing component. We call "local action" an action 
localized in the initiating component, and 
"remote action" an action localized in another 
component. 

(d)Mutual exclusion between local and remote 
actions of different operations is ensured 
separately for each component. 

(e) When an operation is fired, its local action is exe- 
cuted immediately, and each corresponding 
remote action is executed some finite time later 
(possibly using the values of the variables in the 
initiating component as updated by the execution 
of the local action). During the intermediate time 
intervals, other actions may be executed on the 
different components. 

It is clear that an implementation of this model may 
be obtained by using an inter-component communi- 
cation subsystem for the transfer of  messages. When 
an operation is fired in the initiating component, a 
message, containing the identification of the opera- 
tion and the necessary variable values of the initiating 
component, is sent to each component where a 
remote action must be executed. Depending on the 
message transmission service provided by the com- 
munication subsystem, different varieties of point (e) 
above may be considered: (el)  as above (message 
delivery is guaranteed); (e2) as above, but some remote 
actions may never be executed (messages may be 
lost). In addition sequentiality of  the message 
delivery and execution of remote actions may or may 
not be guaranteed for certain pairs of  system com- 
ponents. In general, these characteristics of the 
communication subsystem have a strong impact on 
the behavior of  the distributed system module. 

In the above discussion, we have considered only a 
single system module, such as for example module A 
of the figure above. We have ignored the fact that a 
given physical system component will, in general, 
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Sender Component 
Variables 

length: 0..N; 
Operations 

enter(data: block); 
when length < N 
do begin 

length := length + 1 ; } local action 
Receiver.length := Receiver.length + 1 ; 
Receiver.buffer.put(data) }remote action 

end; 
Initially 

length := 0; 

Receiver Component 
Variables _ 

length: 0..N; 
Buffer: queue of block; {submodule with the primitive operations put, get and empty } 

Operations 
rernove(var data: block); 

when length > 0 
do begin 

length := length - 1 ; } local action 
buffer .get(data); 
sender.length := sender.length - 1 } remote action 

end; 
Initially 

length := 0; 
buffer.empty; 

Fig. 3. Implementation of a queuing module distributed over two components. 

contain components o f  several modules which may 
interact locally through external module operations. 

As in example, we show in Fig. 3 an implementa- 
tion of  a queuing module distributed over two com- 
ponents. It may be used to transfer data from the 
sender component to the receiver component. It is 
derived from a straight-forward non-distributed 
queuing module by duplicating the variable length in 
both components, and assigning the buf fer  variable to 
the receiver component. This corresponds to the 
design strategy of  assigning a variable to the com- 
ponent where it is used, possibly creating several 
copies o f  the same "logical variable" in different com- 
ponents. (We note that the module assumes sequen- 
tial message transmission from the sender to the 
receiver component,  but  not necessarily in the 
opposite direction). 

3. Regular systems 

In this section we consider a certain class o f  con- 
straints which we call regularity, which may be satis- 

fled by distributed systems, described in the model 
outined above, and which, when satisfied, allow a 
logical system validation ignoring the possible 
message transmission delays between the com- 
ponents. The following subsection explains some use- 
ful concepts and notations needed for the following 
discussion. 

3.1. Traces o f  operation execution 

We consider a system module with a certain set of  
possible operations. The (local and remote) actions o f  
these operations are identified by action symbols. A 
"trace" is a string o f  action symbols, and indicates a 
possible execution sequence for these actions. A trace 
contains all local and remote actions o f  the 
operations in the order in which they are executed, as 
seen by a hypothetical outside observer. Given that 
the module is in a certain internal state, which is 
characterized by the values of  its local variables and 
the set o f  "outstanding" remote actions, only certain 
actions may be executed next. A local action, initiat- 
ing a new operation, may only be executed when the 
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enabling predicate of  the operation is satisfied. A 
remote action may only be executed when it is out- 
standing, i.e. when the corresponding local action has 
been executed previously. This limits the set of  
possible traces for a given module. 

We assume that each action has a deterministic 
effect on the local variables of  the executing com- 
ponent. Then each given trace which is possible from 
a given state s of  the module leads to a particular 
module state, which we write (s)o. We say (s)o is 
"defined" iff e is a possible trace starting from s. We 
say that two states s and s' are "equivalent" iff for all 
traces a, s(a) is defined iff (s ' )a is defined, i.e. the 
same traces are possible from s and s'. 

3.2. Regularity 

The condition (a) implies that each operation 
sequence that is possible in the presence of arbitrary, 
but finite communication delays is also possible in 
the absence of  delays. Therefore delays cannot 
introduce any "new" behaviour which would not be 
possible in the case of  negligeable delays. On the 
other hand, condition (b) implies that all operation 
sequences that are possible in the case of  negligeable 
delays are also possible in the presence of  delays. 
Therefore the deadlock and liveness properties of  the 
module are independent of  the delays. We may 
conclude that the behaviour of  the module, as 
characterized by the possible operation sequences 
that may occur, is independent of  any (finite) 
communication delays between the different module 
components.  

As mentioned above, for each possible trace the 
remote actions are executed sometimes after the 
corresponding local actions. If  the remote actions are 
executed immediately after the corresponding local 
actions, one obtains traces of  the form aLaRbL bO) 
b(~ ) ...b(R n) CLdLdR... (where we distinguish local and 
remote actions by the indexes L and R respectively, 
and assume that the operation c has no remote 
action, the operations a and d have one, and b has n 
remote actions). We call such traces "delayless", since 
all possible traces are of  this form in the case that the 
communication delays between the components can 
be ignored. 

Given a module state s with no outstanding remote 
actions, and a possible trace o starting from this state, 
we write 6 for the "corresponding delayless" trace, 
defined to be the delayless trace which contains the 
same local actions as o, and in the same order as o. 
For example, the delayless trace above is the corre- 
sponding delayless trace of  aLbL CLdLdR aR bO) b ~  ) 
...b(R n), as well as of  aLa R bLC L dLb(~ ) dRb~ ) ...b~ ), 
and many others. 

As far as the logical behaviour of  the module is 
concerned, a trace and its corresponding delayless 
trace are considered equivalent, since both define the 
same operation sequence. This is the basis for the 
following definition of  regularity which corresponds 
to the approach explained in the Introduction. 

Definition: A distributed module is "regular" if for 
any trace o such that (so) o is defined, where So is tile 
initial state of  the module, the following holds: 
(a) (So) # is def'med, and 
(b) (so) 0 is a state equivalent to (so)o. 

3.3. Commutation relations and regularity condition 

We give in the following a sufficient condition for 
a system to be regular. This condition may be 
checked by considering separately each component of  
the module, ignoring the particular form of  intercom- 
ponent communication. Therefore the analysis is 
relatively simple. 

Def'mition: An action a "semi-commutes" with an 
action b if for all traces o such that (So)O b a is 
defined, (So)O b a is a state equivalent to (So)O a b. We 
say that a "semi-commutes strongly" with b if  for 
all states s such that (s) b a is defined, (s) a b is a state 
equivalent (s) b a. 

We note that any action of  a given component semi- 
commutes strongly with any action of  a different 
component ,  except for a remote action with the 
corresponding local action. 

Definition: A remote action of  a module component 
is "regular" if  it semi-commutes with all actions of  
the same component.  

Lemma: A remote action a R is regular i f f  for any 
possible trace o f  the form alaLo2aR, where a L is the 
local action corresponding to aR, (So] OlaLo2a R is a 
state equivalent to (So} alaLaRO2. (The proof is 
straightforward). 

Proposition: I f  all remote actions of  a module are 
regular then the module is regular. (The proof, using 
the lemma above, is straightforward). 
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4. Examples 

In this section we consider several examples of  
distributed modules, and analyse their regularity 
using the tools developed in the preceding section. 

4.1. The queuing module 

We consider the distributed queuing module of  
section 2.2. To check the applicability of  the above 
Proposition, it is sufficient to investigate the com- 
mutat ion of  enterR with removeL, and removeR with 
enter L. We find strong semi-commutation in both 
cases. Therefore the module is regular. 

4.2. An  erroneous mutual exclusion algorithm 

An adaptation of  the mutual exclusion algorithm 
o f  section 2.1. to a distributed environment is not 
easily obtained. If  the strategy of  variable assignment 
and duplication, which was successful in the case of  
the queuing module, is applied in this example we 
obtain a distributed module such as in Fig. 4. (the 
variable free is duplicated). It is easy to see that this 
module is not regular. For example, the trace 

User i Component 
Variables 

state: (start, reserved, done); 
free: boolean; 

Operations 
request; 
when state = start and free 
do begin 

state := reserved; ) local action 
free := false; 
for all~ ~ i do userj.free := false; )remote actions 
end; 

usage; 
when state = reserved 
do begin ... {use resource}; state := done end; 

release; 
when state = done 
do begin 

state := start; ) local action 
free := true; 
for all~ ~ i do userj.free:=true; )remote actions 

end; 
Initially 

state := start; free := true; 

Fig. 4. Distributed module. 

userx.requestL user2,requestL userx~,equest~ ) is a 
possible trace, whereas the corresponding delayless 

e .r (2) • trac user1 ~equest L userl equest R user2 ¢equest L ~s 
not, which is a contradiction to condition (a). (We 
note that user~.request(~ ) is the remote action o f  the 
request operation initiated in the user1 component 
executed in the user2 component) .  By the way, this 
also results in a violation of  the mutual exclusion in 
the case of  communication delays, and is an example 
of  a "new" behaviour introduced by non-negligeable 
delay. 

4.3. A centralized mutual exclusion algon'thm 

Similar to the algorithm of  section 2.1, the distri- 
buted resource sharing module of  Fig. 5 uses a 
centralized resource manager. Mutual exclusion is 
maintained by a rather more complex exchange of  
"messages" between the user components and the 
manager. 
To prove the regularity of  the algorithm we consider, 
as in section 4.1., the commutat ion of  each remote 
action with the local actions executed in the same 
component.  This leads to the following pairs of  
actions: 
- alloeateR commutes with request L strongly, 
- alloeateR semi-commutes with usageL strongly, 
-- allocateR semi-commutes with releaseL (there is no 

possible trace of  the form "... releaseL allocateR"), 
-- requestR semi-commutes with allocateL strongly, 
-- releaser semi-commutes with allocateL (there is no 

possible trace of  the form "... allocate L releaseR"). 

Therefore the condition o f  the Proposition is satis- 
fied, and the module is regular. 

4.4. A distributed mutual exclusion algorithm 

Dijkstra has described self-stabilizing algorithms 
with distributed control [5], which provide mutual 
exclusion in the stabilized situation. His solution with 
K-state machines may be re-written in the form given 
in Fig. 6, where nothing is assumed about the initial 
values of  the variables, and • stands for addition 
modulo N. It can be shown [6] that the algorithm is 
self-stabilizing, which means that for arbitrary initial 
values of  the local variables S and L in the different 
components the system will enter, after a finite 
number  of  operations, a "stable" state such as for 
instance the state with L = S = 0 in all components.  

To show the regularity of  the algorithm, we 
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Resource Component (the resource manager) 
Variables 

free: boolean; 
requests: queue of userid; {user identification i.e. 1..N} 

Operation 
allocate; 

var next: userid; 
when free and not empty (requests) 
do begin 

free := false; }local action 
requests.get (next); 
next.state := reserved; 

end; }remote action 

Initially 
free := true; 
requests .empty; 

User i Component 
Variables 

state: (start, reserved, done); 

Operations 
request: 

when state = start 
do begin 

Resource.requests.put(myid) }remote action 
end; 

usage; 
when state = reserved 
do begin 

. . .  {use resource} 
state := done 

end; 
release; 

when state = done 

do begin } local action 
state := start; 
Resource.free := true; }remote action 

end; 
Initially 

state ".= start; 

Fig. 5. Distributed resource sharing module. 

consider the following pairs of  actions: 
- send-s ta tus  R and usage L (for i = 0), 
- send-s ta tusR and usageL (for i > 0), and 
- send-s ta tusR and send-s ta tusL  (the remote action is 

executed in the same component as the local 
action, but belongs to a different operation). 

The last pair commutes strongly. The first two pairs 
semi-commute (assuming as initial state L = S -- 0 in 
all components), but not strongly, i.e. not during the 
self-stabilization phase when nothing can be assumed 
about the variable values. Once the system is 
stabilized, the semi-commutation relation ensures 
regularity. 

User i Component 
Variables 

S, L: 0..K - 1 {own machine state, and latest knowledge 
about the state of the left neighbour} 

Operations 
send-status; 

do useri~ 1.L := S; } remote action 
usage (for i = 0); 

when L = S 
do begin 

. . .  {use resource}; 
S : = ( S + l )  modK 

end; 
usage (for i > 0); 

when L ~ S 
do begin 

. . .  {use resource}; 
S:=L 

end; 

Fig. 6. Dijkstra's solution with K-state machines. 

5. Concluding remarks 

The communication delays between the different 
components of  a distributed system often cause 
problems for the logical consistency of  the overall 
system behaviour. The ideas discussed in the paper 
suggest how to eliminate these problems by observing 
certain regularity constraints during the system design 
which guarantee that the logical behaviour of  the 
system is independent of  the communication delays. 
We believe that the concept of  regularity may lead to 
a better understanding of  the problems of  distributed 
systems, to the design of  simpler systems and more 
reliable implementations. The paper presents a 
descriptive model for the specification o f  distributed 
systems and a simple condition which guarantees the 
regular behaviour of  the system. Several examples are 
given which show how these concepts apply for some 
simple systems. More work is required to study the 
applicability of  the ideas for larger and more complex 
systems. 

The concepts developed in this paper are related to 
many algorithms designed for distributed imple- 
mentation, in particular communication protocols, 
routing algorithms in data networks, and synchroni- 
zation algorithms for distributed data bases. 

In a recent paper [7] Lamport presented some 
synchronization algorithms which rely on a particular 
property of  shared multi-digit variables, namely that 
the value read is always smaller than or equal to the 
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last value written. As in the case of  synchronization 
based on counter variables [1], he complies with the 
restriction that the values o f  the shared variables are 
never decreased. Assuming individual increments are 
always one, this leads to the situation where the value 
read from a shared multi-digit variable is more or less 
"old". The same situation holds in our distributed 
model where the variables o f  distant components 
contain "old" values until they are updated by 
remote actions. When re-written in our model, with 
an appropriate distribution of  variables, most of  
Lamport 's algorithms turn out to be regular, and may 
therefore be used in a distributed context, although 
not originally intended for this purpose. 

While the regularity condition given in this paper is 
particularly simple to check, it is certainly not satis- 
fied by all regular systems. We know of  a simple data 
transmission protocol with message numbering and 
retransmission after time-outs (for recovering from 
lost messages) which is essentially regular, but has 
some non-regular remote actions. Some more power- 
ful regularity condition may be useful for proving the 
regularity in more general situations. 

It would be very valuable to have design methods 
for building distributed system modules which are 
known to be regular. Although we mention the 
strategy of  duplication of  variables for obtaining a 
distributed module from a non-distributed design, a 
strategy which works for the example o f  section 2.2, 
but does not for the case o f  section 4.2, we do not 
deal with this question in the paper. However, Vissers 
[8] described several methods to turn a system, 
designed for negligeable communication delays and 
therefore in general not  regular, into what we call a 
regular system. He considers a "turn method" which 
results in a system where each component in turn 
does an operation, similar to the mutual exclusion 
algorithm of section 4.3. He also considers "freeze" 

and "grant" methods which result in systems where 
two components interact in an inherent asymmetry. 

Other interesting questions not covered in this 
paper are systematic methods for handling message 
losses, non-sequential message delivery, and failures 
of  system components. 
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